The dual nature of time preparation: neural activation and suppression revealed by transcranial magnetic stimulation of the motor cortex.
نویسندگان
چکیده
Single-pulse transcranial magnetic stimulations (TMSs) of the motor cortex (M1) were performed in order to decipher the neural mechanisms of time preparation. We varied the degree to which it was possible to prepare for the response signal in a choice reaction time (RT) task by employing either a short (500 ms) or a long (2500 ms) foreperiod in separate blocks of trials. Transcranial magnetic stimulations were delivered during these foreperiods in order to study modulations in both the size of the motor evoked potential (MEP) and the duration of the silent period (SP) in tonically activated response agonists. Motor evoked potential area and silent period duration were assumed to reflect, respectively, the excitability of the cortico-spinal pathway and the recruitment of inhibitory cortical interneurons. Shorter reaction times were observed with the shorter foreperiod, indicating that a better level of preparation was attained for the short foreperiod. Silent period duration decreased as time elapsed during the foreperiod and this decrement was more pronounced for the short foreperiod. This result suggests that time preparation is accompanied by a removal of intracortical inhibition, resulting in an activation. Motor evoked potential area decreased over the course of the short foreperiod, but not over the long foreperiod, revealing that time preparation involves the inhibition of the cortico-spinal pathway. We propose that cortico-spinal inhibition secures the development of cortical activation, preventing erroneous premature responding.
منابع مشابه
Effects of High-Frequency Repetitive Transcranial Magnetic Stimulation on Motor Functions in Patients with Subcortical Stroke
Background: Motor function impairment occurs in approximately two-thirds of patients with subcortical stroke. Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique for modulating cortical excitability. Objectives: The present study was designed for assessing the efficacy of high-frequency rTMS (5 Hz) on ipsilesional primary motor cortex in patients with subcortical stro...
متن کاملReliability of Motor Evoked Potentials Induced by Transcranial Magnetic Stimulation: The Effects of Initial Motor Evoked Potentials Removal
Introduction: Transcranial magnetic stimulation (TMS) is a useful tool for assessment of corticospinal excitability (CSE) changes in both healthy individuals and patients with brain disorders. The usefulness of TMS-elicited motor evoked potentials (MEPs) for the assessment of CSE in a clinical context depends on their intra-and inter-session reliability. This study aimed to evaluate if removal ...
متن کاملDramatic Response of Resistant Obsessive Compulsive Disorder to Repeated Transcranial Magnetic Stimulation on Right Supplementary Motor Area
The response rate to the treatment of obsessive compulsive disorder (OCD) is 21.6% to 61.3%, which shows a relative resistance to current treatments and a need for novel therapeutic approaches. Here we report a case of resistant OCD with fast and dramatic response to a relatively new method of repeated transcranial magnetic stimulation. In this method a pulse magnetic field emits from a coil o...
متن کاملNeural correlates of dual-task practice benefit on motor learning: a repetitive transcranial magnetic stimulation study.
Dual-task practice has been previously shown to enhance motor learning when both primary and secondary tasks engage similar cognitive processes. In the present study, participants practiced a finger sequence task with the non-dominant hand under a single-task condition (i.e. without a probe task) or a dual-task condition in which a probe choice reaction time (CRT) task was presented during the ...
متن کاملMEDIAN NERVE STIMULATION PO TENTIATES THE MU SCLE RESPONSES TO TRANS C RANIAL MAGNETIC STIMULATION
Motor responses evoked by transcranial magnetic stimulation OMS) or transcranial electrical stimulation (TCS) can be facilitated by a prior conditioning stimulus to an afferent nerve. Two facilitation periods are described short (SI), when the nerve stimulus is given near 0 to 10 ms after cranial stimulation, and long (LI), when nerve stimulation is given 25-60 ms before the cranial stimula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European journal of neuroscience
دوره 25 12 شماره
صفحات -
تاریخ انتشار 2007